
The Lee Fields Medal IV:

SOLUTIONS

Time Allowed: Up to Two Hours and 15 Minutes

Tables and calculators may be used.

1. What is the last digit of 72022?

Solution: There are various ways to determine the last digit is nine. If you simply play
around with powers of seven you will see there is a periodicity to the last digit and
that is how many people will get the final answer, and simply giving the final digit will
suffice for full marks. Let us prove slightly more carefully that the last digit is indeed
nine.

Let us first examine some powers of 7:

71 = 7, 72 = 49, 73 = 343, 74 = 2, 401.

So we have that 74 = 10m1 + 1 where m1 = 240, but actually all that is important is
that m1 ∈ N. Now what happens if we take powers of 74:

(74)2 = (10m1 + 1)2 = 100m2
1 + 20m1 + 1.

Note that the first two terms are multiples of ten and so (74)2 = 10m2 + 1 for some
m2 ∈ N. Now consider:

(74)3 = (74)2 × 74 = (10m2 + 1)(10m1 + 1) = 100m1m2 + 10m1 + 10m2 + 1.

Again the first few terms are all multiples of ten and so (74)3 = 10m3 + 1 for some
m3 ∈ N. Now suppose that (74)k = 10mk + 1 for some mk ∈ N. Then

(74)k+1 = (74)k(74) = (10mk+1)(10m1+1) = 100mkm1+10mk+10m1+1 = 10mk+1+1

for some mk+1 ∈ N. By induction, any power (74)n = 10mn + 1 for some mn ∈ N.

Now look at

72022 = 72020 · 72 = (74)50572 = (10m505 + 1)49 = 490m505 + 49 = 490m505 + 40 + 9,

which has last digit nine, as promised.



2. Describe a way of generating better and better approximations to 2
√
2 using surds.

Solution: This question requires knowing three pieces of information:

(a) That real numbers can be approximated by terminating decimals,

(b) That terminating decimals are fractions,

(c) That a fractional power is a surd.

So we start with a calculator approximation to
√
2:

√
2 ≈ 1.41421 . . . .

Now we can truncate the decimal approximation to generate a sequence of approxima-
tions to

√
2:

1.4, 1.41, 1.414, 1.4142, . . . .

Each of these terminating decimals are fractions:

14

10
,
141

100
,
1414

1000
,
14142

10000
, . . .

If we want we can write these in reduced form (i.e. 14/10 = 7/5, etc.). Now we note
that:

am/n = n
√
am,

and so we have surd approximations to 2
√
2:

10
√
214,

100
√
2141,

1000
√
21414,

10000
√
214142, . . . .

This description suffices for full marks. What about a proof that these are actually
better and better approximations to 2

√
2? Let qk = mk/nk be the k-th approximation

to
√
2 as a fraction, √

2 ≈ mk

nk

,

e.g. q4 =
14142
10000

. Now, what is the maximum difference between qk and
√
2?

√
2 =

14

10
+ 0.01421 . . . =⇒ |

√
2− q1| ≤ 0.1 =

1

101
√
2 =

141

100
+ 0.00421 . . . =⇒ |

√
2− q2| ≤ 0.01 =

1

102
√
2 =

1414

1000
+ 0.00021 . . . =⇒ |

√
2− q3| ≤ 0.001 =

1

103
√
2 =

14142

10000
+ 0.00001 . . . =⇒ |

√
2− q4| ≤ 0.0001 =

1

104

and similarly |
√
2− qk| ≤ 1

10k
. In any case we can write:

qk =
√
2 + εk (|εk| ≤ 1/10k).

Therefore:

|2
√
2 − 2qk | = |2

√
2 − 2

√
2+εk | = |2

√
2 − 2

√
22εk | = |2

√
2(1− 2εk)| = |2

√
2||1− 2εk |.

As k → ∞, εk → 0 and so 2εk → 1 and so:

|2
√
2 − 2qk | → 0 =⇒ 2qk → 2

√
2.



3. Take an odd number n ≥ 3 and square it. Then divide it by two and look at the two
integers closest to what you get, say b and c.

Show that no matter what odd number n you choose, the numbers (n, b, c) are the side
lengths of a right-angled-triangle.

For example, let n = 3 so that n2 = 9. This number divided by two is 4.5, with nearest
integers b = 4 and c = 5, and there is a right-angled triangle with side-lengths 3, 4, 5.

Solution: The trick here is to write n = 2k + 1 for some k ∈ N. From here we square:

n2 = (2k + 1)2 = 4k2 + 4k + 1,

halve:
n2

2
= 2k2 + 2k +

1

2
,

and so we know the two whole numbers closest to this are b = 2k2 + 2k and c =
2k2 + 2k + 1. So the proposal is that we have a triangle with side-lengths:

n = 2k + 1, b = 2k2 + 2k, c = 2k2 + 2k + 1.

To show that in fact there is a right-angled triangle with these side-lengths we just
have to use the converse of Pythagoras Theorem which says that if a triangle has
side-lengths n, b, c such that n2 + b2 = c2, then the triangle is right-angled.

When k ∈ N, 2k2 > 1 and so 2k2 + 2k > 2k + 1 so we have that:

n < b < c.

Let us look at the square of the longest side:

c2 = (2k2 + 2k + 1)2 = ((2k2 + 2k) + 1)2

= (2k2 + 2k)2 + 2(2k2 + 2k) + 1

= (2k2 + 2k)2 + 4k2 + 4k + 1

= (2k2 + 2k)2 + (2k + 1)2 = n2 + b2,

that is the sum of the squares of the other two sides. We have a right-angles triangle
with side-lengths n, b, c as required.

4. Find the equation of the parabola(s) y = ax2+bx+c which contains the points P (1, 0),
Q(2, 3), R(3, 10).

Solution: A point (x0, y0) is on a curve if and only if x0, y0 satisfies the equation of
the curve. So we have1:

a(1)2 + b(1) + c = 0 =⇒ a+ b+ c = 0

a(2)2 + b(2) + c = 3 =⇒ 4a+ 2b+ c = 3

a(3)2 + b(3) + c = 10 =⇒ 9a+ 3b+ c = 10.

1simultaneous equations in three unknowns are not on the ordinary leaving cert syllabus and we apologise
for this oversight.



We can find in each case c in terms of a and b:

c = −a− b

c = 3− 4a− 2b

c = 10− 9a− 3b,

and setting these equal to each other we generate equations in a and b:

−a− b = 3− 4a− 2b =⇒ 3a+ b = 3

3− 4a− 2b = 10− 9a− 3b =⇒ 5a+ b = 7

We can find b = 3− 3a and b = 7− 5a:

=⇒ 3− 3a = 7− 5a =⇒ 2a = 4 =⇒ a = 2,

and from here b = 3− 3(2) = −3 and c = −2− (−3) = 1 and so:

y = 2x2 − 3x+ 1 :

Figure 1: Here we can see the parabola passing through the three points, (0, 1), (2, 3), (3, 10).



5. Four equilateral triangles are arranged around a square which has area 12. What’s the
total shaded area?

Solution: Label as follows:

Let the square of area 12 have side-length s so that:

s2 = 12 =⇒ s = ±
√
12 =

s>0
2
√
3 =⇒ |BD| = 1

2
2
√
3 =

√
3.

As an equilateral triangle, △ABC has all angles 60◦, in particular ∠ABC. Note

tan(∠ABC) =
|AD|
|BD|

=⇒ |AD| = |BD| tan(60◦) =
√
3
√
3 = 3.

By symmetry |FE| = |AD| = 3. Therefore

|AE| = |AD|+ |DF |+ |FE| = 3 + 2
√
3 + 3 = 6 + 2

√
3.

Let |AG| = |GE| = a be the side-length of □AGEH. As a right-angled triangle
∆AGE, Pythagoras speaks:

|AE|2 = |AG|2 + |GE|2 =⇒ (6 + 2
√
3)2 = 2a2 =⇒ a =

6 + 2
√
3√

2
.



So now we know that A(□AGEH) = a2 = (6 + 2
√
3)2/2 = 24 + 12

√
3.

The area of each of the triangles is:

A(∆) =
1

2
bh =

1

2
2
√
3× 3 = 3

√
3

and so the area of the shaded region is:

A(□AGEH)− 4 · A(∆)− A(□ of area 12) = 24 + 12
√
3− 4 · 3

√
3− 12 = 12.

This is a somewhat Pavlovian solution, reacting without great thought to the problem.
A number of students had the following, far more elegant solution. Look again at
∆ACG. Note it is isosceles triangle (|AC| = |CG|), and also this length |AC| =
|BC| =

√
12. Note also that the known angles at C are 60◦, 60◦, and 90◦, which sum

to 210◦, and so ∠ACG = 360◦ − 210◦ = 150◦. From here

A(∆ACG) =
1

2
ab sinC =

1

2

√
12
√
12 sin(150◦) = 3 =⇒ A(shaded) = 4× 3 = 12.

6. With the aid of a diagram, explain why for x > 0:

tan−1(x) + tan−1

(
1

x

)
= 90◦.

Solution: Draw a right-angled triangle with side-lengths one and x:

We have tanA = x/1 = x =⇒ A = tan−1(x) and similarly:

tanB =
1

x
=⇒ B = tan−1

(
1

x

)
,

and so

tan−1(x) + tan−1

(
1

x

)
= A+B = 90◦,

as the angle measures must sum to 180◦.



7. Six cups and saucers come in pairs: there are two cups and saucers which are red, two
white, and two black. If the cups are randomly placed onto the saucers (one each),
find the probability that no cup is on a saucer of the same colour.

Solution: How many ways can the cups be placed on the saucers? Well, for the two
red cups, we must from six saucers choose two, this can be done:(

6

2

)
= 15 ways.

Then for the white cups, we must from four remaining saucers choose two, this can be
done: (

4

2

)
= 6 ways.

Then there are no remaining choices for the black cups, so in total there are:(
6

2

)(
4

2

)
= 90 ways

of placing the cups on the saucers.

Now, how can we place no cup on a saucer of the same colour. We can place both the
red on the white, both the white on the black, and both the black on the red. This is
one way. Alternatively we can place both the red on the black, both the white on the
red, and both the black on the white. This is a second possibility.

Alternatively, we can have one red on each of white and black, one white on each of red
and black, and one black on each of white and red. The white saucers can be (R,B) or
(B,R), the black saucers can be (W,R) or (R,W ), and the red saucers can be (W,B)
or (B,W ), that is there are:

2× 2× 2 = 8 ways

where we don’t have e.g. both red on white.

Therefore,

P[no cup on same colour] =
1 + 1 + 8

90
=

1

9
.

8. Consider three points (1, 2.1), (2, 3.8), (3, 6.1) on the plane. Find the line y = mx that
minimises the sum of the squared deviations of the points from the line.



Zooming in near a point (xi, yi), we see its deviation from the line y = mx. This
deviation is the vertical distance from the point to the line, and the squared deviation
of (xi, yi) from y = mx is equal to (mxi − yi)

2. In the case of the point (1, 2.1), this
squared deviation is (m(1)− 2.1)2 = (m− 2.1)2.

Solution: We have that the sum of the squared deviations is:

s(m) = (m− 2.1)2 + (2m− 3.8)2 + (3m− 6.1)2.

This can be multiplied out to get s(m) = 14m2 − 56m + 56.06. Now we want to find
the minimum and this occurs where s′(m) = 0, so we want to find the m such that:

s′(m) = 0

=⇒ 14 · 2m− 56(1) = 0

=⇒ 28m = 56

=⇒ m = 2.

Figure 2: Here we see the lines y = 0.8x, y = 1.2x, y = 1.6x, y = 2x, y = 2.4x, y = 2.8x
and y = 3.2x. Not shown: infinitely many more lines, one for each m ∈ R. Out of all these
infinitely many lines, the line y = 2x is the best fit to the points in this, least squares, sense.

9. Johnny & Mary live in a town with only eight pubs but they still want to do the 12
Pubs of Christmas. They decide to start in Pub A and after each drink move to one
of the three adjacent pubs whether they have been there before or not. If they do
not have to visit every pub, can Johnny & Mary end up back in Pub A for their 12th
drink? Justify your answer.



Solution: This is an example of a bipartite graph. That is the nodes A,B, . . . , H can
be coloured black and white, such that no black node is adjacent to any other black
node, and similarly for the white nodes:

Now, pub A is a black node, and the point is that whenever John and Mary are in a
black node, the next node is white. And whenever they are in a white node, the next
node is black. So starting at pub A, black, the next 11 pubs will be:

W → B → W → B → W → B → W → B → W → B → W.

In other words, the even pubs are white and the odds pubs are black. So on the 12th
drink they are in a white pub, and A is not a white pub, so they must cannot end up
there on their final drink.

10. Two cubes are used in a calendar to display the day for the current month as shown
below. List what should be written on the sides of each cube so that all days 1-31 can
be displayed by the calendar:

Solution: The greedy approach is to put 0, . . . , 5 on the first cube. Then you need at
least 6, 7, 8, 9 on the second cube, together with 1, 2 for the 11th and 22nd days... but
this misses out on 03, 04, 05. The trick is to realise that 6 can do 6 and 9. So if you
have 0, . . . , 5 on the first cube, and 1, 2, 6, 7, 8 on the second, you no longer need to
miss out on 03, 04, 05, because you can put a second zero on the second cube. Now
you have everything, by inspection, with:

{0, 1, 2, 3, 4, 5} and {0, 1, 2, 6, 7, 8}


